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Abstract—
In the last decade, Deep Learning has rapidly infiltrated the consumer end, mainly
thanks to hardware acceleration across devices. However, as we look towards the
future, it is evident that isolated hardware will be insufficient. Increasingly complex
AI tasks demand shared resources, cross-device collaboration, and multiple data
types, all without compromising user privacy or quality of experience. To address
this, we introduce a novel paradigm centered around EdgeAI-Hub devices,
designed to reorganise and optimise compute resources and data access at the
consumer edge. To this end, we lay a holistic foundation for the transition from
on-device to Edge-AI serving systems in consumer environments, detailing their
components, structure, challenges and opportunities.

Since their very advent, Deep Neural Networks
(DNNs) have been getting larger in their attempt to
be more accurate without losing generality. Simulta-
neously, higher accuracies have also been a result of
combining multiple models (ensembles or cascades)
or inventing more exotic architectures, manually or
automatically, that offer higher capacity, better gener-
alisation or fewer inductive biases [18].

More recently, there have been emerging trends in
Artificial Intelligence (AI), generative or discriminative,
which are changing the computational landscape quite
significantly. On the one hand, the training of hyper-
scale models that act as foundations in latent spaces
for solving a multitude of downstream tasks in one or
multiple modalities has been dominating computation
in cloud AI. Prominent examples include Large Lan-
guage Models (LLMs), text-to-image generation (out-
painting) or generative image composition (in-painting).
On the other hand, as devices become more capa-
ble, an increasing number of DNNs are deployed on-
device, oftentimes required to run simultaneously. Fur-
thermore, the advent of fields like Federated Learning
(FL) and personalisation introduce on-device training
workloads.

Despite the forward-looking use-cases, such work-
loads have been pushing the compute and memory
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requirements to unprecedented scales (Fig. 1), along
with their data ingestion needs. However, individual
edge device capabilities have not scaled at the same
pace. While the consumer edge becomes increasingly
populated by smart devices, these continue to operate
as standalone entities in isolation from their compute
environment. Therefore, there are many missed oppor-
tunities for shaping a common context to learn and per-
form higher-level or fidelity tasks under a collaborative
environment.

As such, a gap exists between compute require-
ments and resource availability for deploying intelli-
gence at the consumer edge, which is unlikely to
be bridged only through traditional hardware scaling
techniques. In this paper, we present a new paradigm
for organising resources at the consumer edge when
executing emerging AI-tasks. Departing from isolated
devices and moving into more capable EdgeAI-Hubs,
we argue that the fluid sharing of compute and the
among-device sharing of context information are key
ingredients of an architecture that would deliver on
the requirements of modern AI-tasks, with privacy and
sustainability as vital components for deploying of
state-of-the-art AI at the consumer edge.

Deep Learning Trends
DNNs have traditionally grown in size in their strive
for higher accuracies in pursuit of intelligence. Within
a few years, we moved from the traditional multi-
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FIGURE 1: Evolution of DNNs operations (FLOPs) and
hardware throughput (OP/s).

layer perceptron into deep networks of various forms
and architectures. While the inductive bias of previous
DNNs offered a convenient “shortcut” for learning in
different modality inputs and a native mapping to widely
available hardware, it turned out that convolutions were
not “all that we needed”.

The advent of transformers [18] brought a breath of
fresh air into deep learning, and enabled the training
of hyperscale models, able to organise and query
the knowledge over massive datasets, and facilitated
novel applications spanning across the personal and
work life of the user. Such include NLP and vision
related use-cases, such as next-gen multi-modal chat
assistants or meeting and document abstractive and
creative tools. Unprecedented accuracies and novel
use-cases were accompanied by inflated model foot-
prints, only able to be trained distributedly in large
datacenters. Even at inference, these models remain
notoriously difficult to deploy, and much more so with
real-time performance [10]. Indicatively, running a 4-bit
quantised version of Llama-2-7B on an M2 Max SoC
(Metal) vs. a Galaxy S23 Ultra (OpenCL), yields 7.2×
higher throughput, based on our experiments.

Besides execution time, the large memory footprint
of recent models has a direct energy impact on hard-
ware, which becomes the main scaling bottleneck [14].
Memory accesses dominate energy, with more than
100× higher consumption than computation, while on-
chip caches often account for 50% of the processor’s
energy budget. Indicatively, executing TinyBERT (full-
precision weights: 255MB) on mobile processors, such
as the Edge TPU (8MB cache), requires an excessive
amount of off-chip memory accesses and intensive use
of the on-chip cache [14]. As a result, even if new
mobile processors could execute such models faster,
the battery would be drained at an unacceptable rate.

At the same time, privacy of user data has be-
come a top priority. Thus, alternative models of de-
centralised training have appeared, namely FL and on-
device personalisation. While game-changing, since it
enables collaborative learning and pushes computation
to where data reside, training on device creates a much
more memory- and energy-consuming workload that
not all mobile devices can support. Indicatively, training
SmallBERT on device can consume more that 8GB
of peak memory, while inference requires 1/16th of
that [4]. Simultaneously, such in-the-wild deployments
need to deal with data and system heterogeneity,
along with partial availability and dubious robustness
of clients, while competing for resources with other co-
habitating workloads.

The Evolution of ML Compute
The adoption and continuous upscaling of DNNs would
not have been possible without the scaling of compute
capabilities. GPUs, and their re-purposing from graph-
ical to neural accelerators, initially paved the way to-
wards training deep networks, followed by specialised
ASIC/FPGA accelerators.
On-device compute for DNNs. Nevertheless, DNNs
were never intended to stay limited to the premises
of the datacenter. AI advancements made their way
into the consumer world [1] with smart devices of
different shapes and forms, ranging from smartphones
and wearables to IoT devices and even robots. Their
omnipresence and sensing capabilities enabled the
production of unprecedented scales of local data from
various modalities, available for harvesting.

While initially fully offloaded to the cloud at the cost
of privacy and latency, DNN computation has since
progressively been “onloaded” to devices. What made
this possible was advances in mobile hardware, which
leverage integrated GPUs and Neural Processing Units
(NPUs) on the same System-on-Chip (SoC) [7] or
external accelerators, e.g. Edge TPU. In addition,
EfficientML techniques have enabled performant on-
device execution for a multitude of AI-tasks.

Still, in contrast to typical cloud-based infrastruc-
ture, the computational landscape in-the-wild is much
more heterogeneous [1] and failure-prone [5], while the
device still needs to remain responsive for tasks of the
respective user. This brings new challenges that need
to be tackled by device manufacturers and developers
for making the mobile devices truly “smart.”
On-device hardware vs. offloading. DNN compute
requirements and the respective hardware have not
necessarily scaled at the same pace (Fig. 1), as their
development cycles are very different. In essence,
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developing and deploying highly specialised hardware
is a high-cost process and needs to be balanced from
a utility-cost standpoint and from a device lifecycle
perspective. Regardless, cloud infrastructure still re-
mains much more capable and allows for performant
general-purpose compute without the constraints or
heterogeneity of the edge. However, this occurs at the
expense of client latency, provider cost and privacy.
Thus, the ubiquitous question on how much com-
putation to offload or whether to dedicate on-device
hardware is posed in the consumer Edge-AI space.

The State of Consumer Edge-AI
Currently, there are emerging applications in the

consumer domain, still too costly to be deployed to the
edge, or lack a common context that could be shared
amongst devices in the ecosystem. In this setting,
referred as Consumer Edge-AI 1.0, there is a lot of
unfulfilled potential that is currently limited by the way
intelligence is organised, deployed and distributed.

Devices are islands
While more and more devices penetrate the realm of
the smart edge, they generally remain siloed, inte-
grating standalone hardware to support their narrow
requirements and generally do not advertise their ca-
pabilities to other local devices. Moreover, separate
personal and work devices tend to be a common
setup for legal and privacy reasons. In such an in-
elastic deployment, not only are many compute cycles
wasted, but devices remain constrained in their own
settings, and replicate similar sensor integration to
perform different tasks. As such, the per-device cost
is higher, the utilisation remains low and the hardware
investment gets retired at the end of the device’s
lifecycle. While computation offloading and split com-
puting [11] have been widely proposed before, they
remain largely point-to-point and lack horizontal shar-
ing of contextual information amongst user devices,
therefore acting as mere remote accelerators. Thus,
for personalising one’s own GPT-assistant, individual
devices would need to reach and offload data to third-
party cloud services, as they currently lack a common
data and compute fabric.

Shortcomings of previous paradigms
There have been various paradigms of organising ML
execution between devices, offering varying levels of
success and adoption, presented in Fig. 2. Specifically:
On-device ML [16]. The one end of the spectrum is
to run AI-tasks locally on-device. While simple, it is
far from simplistic as embedded and mobile devices

come with severe constraints across computation, en-
ergy and thermals [10]. Thus, specialised hardware
integration along with EfficientML techniques become
core enablers [1]. Data-sharing remains minimal.
Centralised Learning. The other end suggests that
storage and compute are outsourced from the mobile
device to more powerful cloud resources. Initially theo-
rised through the Mobile Cloud Computing (MCC) [20]
paradigm, it remains today the status-quo method for
training and deployment of ML workloads. Latency and
privacy remain key issues of this paradigm, along with
the need to transfer all data.
Collaborative Learning. Edge computing [20] has
been motivated by the movement of compute closer
to where the data are produced, i.e. the edge. It
provides lower latency compared to cloud offloading
(i.e. MCC) and can be anywhere in between the cloud
and the end-device, including base station servers
(i.e. MEC) and ambient devices (i.e. Fog Computing).
These paradigms mainly focused on general compute
sharing, and while forward-looking, they never found
a “killer” use-case driving their adoption, and devices
remained isolated with opportunistic collaboration if
any. Closer to ML, this paradigm can manifest as Dis-
tributed Learning, with use-cases including inference
offloading and distributed training.

Consumer Edge-AI 2.0
Given the accelerated rise of new AI-based use-cases
and the inability of individual smart devices to scale
up their capabilities and context to that dynamic, we
propose a new architecture that aims at ML execution,
through flexible sharing of compute resources with
smarter placement of specialised hardware, so that
edge devices’ processing power is augmented sustain-
ably without extreme duplication. At the same time and
contrary to prior paradigms, their sensing capabilities
can also be enhanced via sharing of their situational
context to enable collaboration while respecting pri-
vacy.

Shared compute
Hardware resource allocation. Specifically, we shift
from the paradigm of developing and integrating highly
specialised NPUs into every available device to a
model where higher-end and more general acceler-
ators can be hosted in central-device hubs. These
hubs can be standalone devices that only serve this
purpose (e.g. a home accelerator) or “piggy-backed”
into devices with longer life cycles omnipresent at the
edge (e.g. a router or TV). Thus, hardware can take
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FIGURE 2: Consumer Edge-AI 1.0 paradigms. While not necessarily mutually exclusive, they provide different
levels of interaction between the involved entities.

advantage of larger budget in terms of area, cooling
and power to provide acceleration to more operations
and users than before. In fact, this hardware can
even be based on reconfigurable FPGAs [19], so that
they can be adjusted to the user needs and available
devices. Last, they can be designed in a way that many
hubs can be interconnected to scale out capabilities.

We distinguish two levels of compute sharing, both
of which act complimentarily to one another and need
to be optimised in tandem to achieve resource allo-
cation efficiency: i) static partitioning and ii) dynamic
resource sharing. Static partitioning refers to the place-
ment of dedicated compute units to devices. While
certain IoT devices can become as thin as a sensor
with a network adapter, others still need to maintain
some autonomy or mobility. As such, one cannot sim-
ply centralise all available compute and strip devices
out of any meaningful capabilities. Instead, a balance
between the two ends of the spectrum is needed.
For example, on-device inference may be a common
AI-task, but opportunistic participation1 in FL has not
shown a real need so far. Thus, smartphones may
not need train-capable hardware integration. Instead,
a training-ready NPU could be integrated to a home
hub where training can be offloaded.

Simultaneously, resource sharing can happen dy-
namically between device-hub or in a peer-to-peer
manner, compatibly with Edge/Fog Computing [20].
Workloads can be offloaded on demand, based on
either the static capabilities of the device or their
instantaneous dynamic load. Effectively, one can think
of resource partitioning and allocation as a generalised
Knapsack Problem. How the equilibrium of resource
partitioning is met is a function of i) the nature of AI-
tasks at hand, ii) their urgency to complete, and iii) the

1Participation in FL usually happens when device is plugged
in and connected to WiFi.

User #1 User #2 User #3
User-devices

Shared-devices

Remote-devices

FIGURE 3: Privacy and collaboration zones between
devices. These can be supported via rights man-
agement through device-owner groups and Access-
Control Lists.

intersection of tasks between devices.

Networking & scheduling. Central to this elastic com-
pute is a capable multi-channel networking infrastruc-
ture on top of which different requests for AI-tasks can
be scheduled and prioritised. Such an infrastructure
should offer multi-channel access, as different devices
support diverse protocols (e.g. Wi-Fi, BLE, Zigbee,
LoRa, etc.), load-balancing among available channels
and bandwidth slicing for better Quality of Experience
(QoE). Advancements in mobile wireless communi-
cations (B5G, 6G) can also facilitate the adoption
of this paradigm, over sub-THz, THz or visible light
communications (VLC) [2]. Additionally, task deadlines
with preemption under multi-tenancy are core features
for the scheduler to guarantee QoE for all active users.
For example, the upscaling of live streaming video for
a user would need to be given higher priority than the
classification of newly acquired gallery photos on a
user’s device, which can be done offline. Thus, it is
one of the hub’s primary objectives not only to provide
resources, but also to co-ordinate them.
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Shared context
By having interconnected compute, it is also possible to
share a common context between sensing devices to
fulfill collaborative tasks. As such, a smart speaker may
not only serve as a standalone device, but could also
be used for recognising a user in a room along with
their intent (e.g. work or entertainment) to personalise
their experience by preloading their profiles on ambient
devices. At the same time, it can serve as a secondary
microphone for noise cancelling or even for intrusion
detection along with a smart camera. Context sharing
can be i) explicit, through sensor-data exchange or
ii) implicit, by embedding subsets of available sensors
into a common subspace that can be leveraged for
different tasks. Last, different tasks can also share
common DNN backends, instead of replicating them
per device. For example, the obstacle detection sub-
system of a robotic vacuum cleaner could share parts
of a DNN with a pet surveillance camera. In fact, both
can act as sensors for enhancing the classification
result through multi-view perspectives, with one even
offering active vision capabilities.

Privacy
In this era of AI, where information is eagerly digested
by billion-scale models, consumer data are increas-
ingly important to protect. Therefore, privacy becomes
an innate design component of next-generation con-
sumer Edge-AI.
Privacy-preserving ML. Specifically, we differentiate
between privacy and robustness at inference and train-
ing time. In the former setting, the input and outputs2

of the DNN are sensitive, rather than the model it-
self.3 However, when training or personalising a model,
along with the data involved, the model parameters and
gradients become also privacy-sensitive, as they may
leak user data. Overall, privacy spans in a continuous
spectrum, i.e. a privacy budget [12], and therefore
should be treated accordingly.
Trust zones. Simultaneously, different data have dif-
ferent sensitivity towards different entities/adversaries.
For example, there are data that one might want
accessible from home-owned devices but private to the
public, such as holiday trip photos. Conversely, one
could share their browsing preferences with a third-
party for ad personalisation, but not with their house-
hold. The same applies between work and personal
devices, a delineation that might not be straightforward

2Along with the intermediate representations.
3From the user’s standpoint. Model privacy may be of

business-critical importance to the provider.

in working-from-home settings. As such, trust zones
are formed that shape the data flow of collaboration in
Edge-AI, depicted in Fig. 3.

Sustainable-AI
Additionally to user privacy, it is also important to
respect the environmental ecosystem in which Edge-AI
operates. We capitalise on the fact that not all down-
stream tasks require overprovisioned DNNs running
round the clock and save on energy and transmission
costs. Simultaneously, we acknowledge the downsides
of onloading more computation to the consumer edge
where energy sources and efficiency may be subopti-
mal compared to large datacenters [14] and propose
ways to offset them.
EfficientML. A particularly important component in
any embedded deployment of AI is the optimisation
of resources. Embedded and mobile devices inte-
grate lower computational capabilities than state-of-
the-art servers. To that direction, techniques from
EfficientML [16] reduce the computational, memory
or bandwidth requirements of AI-tasks, by means of
changing the architecture, representation or execu-
tion [5], [9] of the DNN in an offline or dynamic man-
ner. These, not only affect the users’ QoE, but can
drastically reduce energy consumption. For example,
early-exit networks can leverage the difficulty or spatio-
temporal relatedness [8] of inputs to preempt compu-
tation on-demand.
Lower manufacturing costs. Our paradigm also
economises on the placement of highly-specific ac-
celerators. By centralising certain components of the
edge compute infrastructure, the manufacturing cost
of mobile or IoT SoCs can be lower and the effective
utilisation rate higher.
Device upcycling. The unprecedented pace of com-
puter systems advancement means that devices be-
come quickly deprecated and turn from useful compan-
ions to effectively e-waste. However, old devices still
integrate various sensors and oftentimes enough com-
pute power to be useful [17]. We embrace the previous-
generation devices co-existence and integrate them
in a sustainable manner to the smart edge context,
through upcycling and repurposing.

Proposed Architecture
Here, we lay out a reference architecture of the
systems implementing our paradigm and how differ-
ent components interact to accomplish the end goal,
i.e. supporting and enabling AI-task execution through
a common computational and contextual fabric, while
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preserving user-privacy and sustainability. We select
an edge-accelerated solution as on-device resources
are clearly not sufficient for the upcoming workloads
(Fig. 1) and fully offloading to resources beyond the
edge hurts user-privacy and racks up provider costs.

Orchestrator

The consumer-edge ecosystem is inherently dynamic,
multi-tenant and partially unavailable, mixing mobile
and static devices of potentially different owners. While
a peer-to-peer approach may initially seem tempting,
we would soon be presented with high preemption
rates due to device (un-)availability, along with data
inconsistency or model staleness issues. Therefore,
we adopt a server-client design where a central node
(orchestrator) is responsible for the subscription and
management of resources in the local edge. The or-
chestrator should reside in a non-mobile (for availabil-
ity) device of the edge network (i.e. the EdgeAI-Hub)
and should be relatively high-end in terms of compute
and networking capabilities for fine-grained scheduling
and high-fidelity cross-channel data communication,
respectively. Finally, it can be co-located with an AI-
capable device – such as a high-end TV or a powerful
IoT hub, both of which are persistently available at the
edge – or can be simply coordinating them. To avoid
having a single point of failure or bottlenecks, there
can be a secondary orchestrator residing on another
capable device if such exists at the edge.

A reference design of the orchestrator is depicted in
Fig. 4a. Effectively, the orchestrator is the coordinator
of the AI-task processes among device resources,
with optional cloud offloading, where Trusted Execution
Environments (TEEs) could ensure privacy. To this
direction, it comprises a resource manager to keep
track of available resources and dynamic load of de-
vices and a scheduler to allocate jobs. Each device
maintains its own queue, with preemptible tasks based
on their relative priority. To facilitate resource-to-task
matching, a performance controller assesses an AI-
tasks’s runtime on a certain device through analytical
or historical estimators.

Upon scheduling a training or inference task, the
orchestrator tracks its execution; the respective con-
troller monitors the task progress, and handles data
and model access between devices or even parameter
aggregation, if applicable. This way, context sharing
and collaborative learning are enabled in a robust man-
ner, while access to sensitive data remains controlled.

EdgeAI-Hub
Fig. 4b showcases the technology stack of an EdgeAI-
Hub. At the bottom, we have the hardware that is
responsible for running the AI-tasks. The underlying
SoC would integrate general-purpose and specialised
hardware, i.e. an NPU, to accelerate common DNN
operations, from convolutional and fully-connected lay-
ers to Transformer blocks [3]. Contrary to smartphone
SoCs nowadays, EdgeAI-Hub hardware should be op-
timised for i) a broader set of operations, ii) multi-
precision support, iii) sparsity and dynamic input length
support , iv) large multi-level memory for training with
Direct Memory Access (DMA) support for zero-copy
distributed ML, v) virtualisation for fast context switch-
ing and task preemption under multi-user tenancy, and
vi) hardware-based app sandboxing with TEE [13] for
secure processing of sensitive data.

Network-wise, we envision the EdgeAI-Hub to sup-
port simultaneous communication over multiple inter-
faces, both for supporting different devices as well
as for load-balancing and higher throughput. Multiple-
Input Multiple-Output (MIMO) over multiple antennas
could increase communication capacity, along with
mesh networking over proxy repeaters for densely
covering the deployment setting. Last, device discovery
and handshaking should be made possible over any
supported channel, e.g. BLE, NFC, UWB. Extensibil-
ity through removable components could also future-
proof the EdgeAI-Hub’s hardware and trade energy
efficiency for additional bandwidth.

Data are a first-class citizen in AI and, thus, storage
becomes important. We propose a hierarchical storage
solution with fast caching for iterative operations, like
model training or model/context sharing, and traditional
drives for long-term persistence. Hardware-level en-
cryption and user-management with Access Control
List (ACL) support from the filesystem is important
to ensure security and privacy of data. Finally, redun-
dancy could be offered through hardware (e.g. RAID)
or distributed replication.

Moving up, the operating system (OS) is responsi-
ble for local resource management and task schedul-
ing. Low-level ML compilers and BLAS libraries would
reside on top of the OS, along with the high-level ML
framework interpreters for DNN execution.

The middleware and application layers form the top
of the stack. The former is responsible for the coordi-
nation of distributed execution of tasks, including the
orchestrator, preemptive scheduler and performance
monitor of local and remote resources. The application
may then span across different use-cases from the
following section.
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(a) (b)

FIGURE 4: Orchestrator reference design (4a) and EdgeAI-Hub reference stack (4b).

Enabling Upcoming Use-Cases
There are various existent or upcoming applications
that can benefit from the proposed paradigm.
Virtual assistants & enhanced interaction. Home
assistants have been progressively penetrating the
consumer-edge. However, they largely remain thinly-
provisioned, with most computation happening on the
cloud. The proliferation of LLMs that could be – at
least partially – hosted on premises could significantly
improve privacy, but also enable new use-cases of
general or context- and user-specific question answer-
ing. Additionally, these models can be combined with
other modalities (e.g. vision) and repurposed for more
complex tasks in the context of smart homes.
Virtual spaces. AR/VR technologies have been un-
doubtedly getting more capable (e.g. Apple Vision Pro)
and the promise of virtual worlds like the Metaverse
increasingly relevant. Furthermore, the importance of
online communication has been further enhanced by
the COVID-19 pandemic and alternative models of
collaboration, such as telepresence, have emerged. As
the physical world enters virtual reality, ML plays a cen-
tral role and new architectures for scene representation
or object mapping (e.g. NERF) are utilised, requiring
significant computational power and energy to remain
mobile. Preparing the consumer ecosystem for such
workloads via low-latency multi-device collaborative
inference [15] can be the enabler for such next-gen
technologies, be it for multiplayer VR gaming, hybrid
collaboration or immersive entertainment.
Asynchronous collaboration. Maintaining a work-life
balance when working from home can be difficult, es-
pecially when collaborating in international and multi-
timezone settings. Therefore, tools enabling queryable
meeting and document summarisation or multilingual

translation (e.g. Microsoft Office co-pilot), along with
creative writing or coding assistants (e.g. Github co-
pilot) can be valuable tools for asynchronous collab-
oration. With privacy being a major business require-
ment, running such models locally becomes crucial. By
locally offloading computation to trusted devices, this
can be realistically implemented.
Cyber-physical agents. Inversely, computer agents
have started having physical presence. Robotic
agents, in the form of vacuum cleaners, assistants for
the elderly or multi-articulated arms for cooking have
appeared and push the envelope of what is possible.
In this realm, agents may co-exist with one another or
with other sensors that can enhance their perception
and spatial awareness. Moreover, mobile robots can
act as active learning agents for gathering knowledge
and reducing model uncertainty.
e-Health. Edge AI has the potential to democratise
healthcare by making services available at the point-
of-care via automated or assisted diagnostics and
treatments [6], without the need to send patient data to
the cloud. Be it through automated diagnostics or treat-
ments, over AI-aided consultations and care, Edge-
AI-driven services can improve efficiency and privacy
while lowering risk and cost. Additionally, wearables
allow for real-time health and fitness feedback and,
coupled with external sensors at home, can provide
insights and alerts for health issues in a multi-sensory
manner. This can be complemented with digital gas-
tronomy tools for more complete well-being assistants.

Challenges
The advent of such new consumer ecosystems brings
about several challenges. These remain largely open
issues and we anticipate them becoming prevalent
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topics of future research.

ML-related challenges
Non-IID data, tasks and annotations. In-the-wild data
are highly heterogeneous across clients and may tem-
porally evolve. As such, techniques from domain adap-
tation, FL and Continual Learning become increasingly
relevant to generalisation. Moreover, local data avail-
able for training may not be “clean” or annotated with
labels, thus paving the way for alternative methods,
including semi-supervised, unsupervised and active
learning for generalisation.
Model co-habitation. Nowadays smart-devices
(e.g. smartphones) perform a multitude of tasks
concurrently. As such, several DNNs may be
cohabitating the device running in parallel. How
these are scheduled to be executed efficiently is an
open problem [19].
Utility & privacy. FL is becoming a prevalent paradigm
for pushing training to the device, the custodian of
data. However, there is a trade-off between global and
private utility, as optimisation goals can clash. Adding
differential privacy noise to the updates adds another
degree of freedom, trading utility for privacy. Striking a
balance between all these factors can be challenging.
Confidence assessment. As AI-tasks progressively
make their way into the physical world, through robotic
assistants, it is necessary to not only make decisions
in a binary manner, but also assess the confidence
of their decisions before acting, both for safety and
interpretability.

System-level challenges
System heterogeneity and availability. Contrary to
the datacenter, devices in the wild can be very het-
erogeneous and may arbitrarily become unavailable,
due to mobility, power or network connectivity. As such,
they should be treated accordingly, as this can affect
the overall performance, robustness or even fairness
of the (eco)system.
Multi-channel networking. The network interconnect
is a core component in the proposed paradigm, acting
as a multi-dimensional bus among devices. This inter-
connect is largely wireless, potentially lossy and het-
erogeneous in its implementation and qualitative char-
acteristics. Thus, careful task scheduling and channel
load balancing is important for ensuring best QoE.
Fault-tolerance & task preemption. As resources
may become unavailable, high-priority tasks should be
given fault-tolerance margins or be restarted on avail-
able resources in a transparent-to-the-user manner.

Interoperability. Another repercussion to extreme het-
erogeneity is that devices of different manufacturers,
generations and tiers will need to co-operate through
a common interconnect. The same applies to network-
ing interoperability, which can become a bottleneck
across generations of devices. As such, backwards
compatibility, standardisation of interfaces and open
middleware become requirements to break away from
silos and enable device federation.
Incentives. An equally important factor for realisation
of such a paradigm is incentivisation of the stakehold-
ers: i) Manufacturers to support federated operation
of devices and unlocking the potential of old devices;
ii) Clients to accept on-premise execution of AI-tasks
that can potentially benefit more users (e.g. FL).
Market transcendence. It is unlikely that many con-
sumers will invest on an expensive device ecosys-
tem at once. Therefore, it is valuable to consider the
consumer market in a stateful manner, where devices
pre-exist and come up with a way of gradual tran-
scendence. An example could be firstly co-locating AI-
Hubs on premium high-end devices (e.g. TVs) that pro-
gressively get marketed as modular components and
standalone devices. This also means that connected
devices can gradually get cheaper since they do not
need to overprovision for bespoke hardware.

Conclusions
We have just started witnessing the revolutionary
capabilities of the latest generation of ML models.
However, their resource demands are beyond what
the current consumer edge can sustain, making them
accessible to only a few. In this article, we envision
a new Edge-AI paradigm, built around EdgeAI-Hubs.
These hubs do not only enable complex, resource-
intensive applications to run at the consumer edge,
but also prioritise user-privacy. To achieve this, we
have laid the groundwork with a cross-layer blueprint of
this architecture and pinpointed the challenges that lie
ahead. Ultimately, our work serves as a foundation to a
new, more collaborative model in consumer electronics
that can set the stage for how our devices operate in
the future.
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